Fully Convolutional Grasp Detection Network with Oriented Anchor Box
نویسندگان
چکیده
In this paper, we present a real-time approach to predict multiple grasping poses for a parallel-plate robotic gripper using RGB images. A model with oriented anchor box mechanism is proposed and a new matching strategy is used during the training process. An end-to-end fully convolutional neural network is employed in our work. The network consists of two parts: the feature extractor and multi-grasp predictor. The feature extractor is a deep convolutional neural network. The multi-grasp predictor regresses grasp rectangles from predefined oriented rectangles, called oriented anchor boxes, and classifies the rectangles into graspable and ungraspable. On the standard Cornell Grasp Dataset, our model achieves an accuracy of 97.74% and 96.61% on image-wise split and object-wise split respectively, and outperforms the latest state-of-the-art approach by 1.74% on image-wise split and 0.51% on object-wise split.
منابع مشابه
A Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI
Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...
متن کاملVehicle Detection from 3D Lidar Using Fully Convolutional Network
Convolutional network techniques have recently achieved great success in vision based detection tasks. This paper introduces the recent development of our research on transplanting the fully convolutional network technique to the detection tasks on 3D range scan data. Specifically, the scenario is set as the vehicle detection task from the range data of Velodyne 64E lidar. We proposes to presen...
متن کاملDouble-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence
In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...
متن کاملLCNN: Low-level Feature Embedded CNN for Salient Object Detection
In this paper, we propose a novel deep neural network framework embedded with low-level features (LCNN) for salient object detection in complex images. We utilise the advantage of convolutional neural networks to automatically learn the high-level features that capture the structured information and semantic context in the image. In order to better adapt a CNN model into the saliency task, we r...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018